
ABase: the Multi-Tenant NoSQL Serverless Database for Diverse
and Dynamic Workloads in Large-scale Cloud Environments

Rong Kang
ByteDance Inc.
Beijing, China

kangrong.cn@bytedance.com

Yanbin Chen
ByteDance Inc.
Beijing, China

chenyanbin.cyb@bytedance.com

Ye Liu
Bytedance Inc.
San Jose, USA

ye.liu@bytedance.com

Fuxin Jiang
ByteDance Inc.
Beijing, China

jiangfuxin@bytedance.com

Qingshuo Li
ByteDance Inc.
Beijing, China

liqingshuo.liqs@bytedance.com

Miao Ma
ByteDance Inc.

Sydney, Australia
miao.ma@bytedance.com

Jian Liu∗
ByteDance Inc.
Beijing, China

liujian.kv@bytedance.com

Guangliang Zhao
ByteDance Inc.

Hangzhou, China
gaoliang6@bytedance.com

Tieying Zhang
Bytedance Inc.
San Jose, USA

tieying.zhang@bytedance.com

Jianjun Chen
Bytedance Inc.
San Jose, USA

jianjun.chen@bytedance.com

Lei Zhang
ByteDance Inc.
Chengdu, China

zhanglei.michael@bytedance.com

Abstract
Multi-tenant architectures enhance the elasticity and resource uti-
lization of NoSQL databases by allowing multiple tenants to co-
locate and share resources. However, in large-scale cloud environ-
ments, the diverse and dynamic nature of workloads poses sig-
nificant challenges for multi-tenant NoSQL databases. Based on
our practical observations, we have identified three crucial chal-
lenges: (1) the impact of caching on performance isolation, as cache
hits alter request execution and resource consumption, leading
to inaccurate traffic control; (2) the dynamic changes in traffic,
with changes in tenant traffic trends causing throttling or resource
wastage, and changes in access distribution causing hot key pres-
sure or cache hit ratio drops; and (3) the imbalanced layout of
data nodes due to tenants’ diverse resource requirements, leading
to low resource utilization. To address these challenges, we intro-
duce ABase, a multi-tenant NoSQL serverless database developed at
ByteDance. ABase introduces a two-layer caching mechanism with
a cache-aware isolation mechanism to ensure accurate resource
consumption estimates. Furthermore, ABase employs a predictive
autoscaling policy to dynamically adjust resources in response to
tenant traffic changes and a multi-resource rescheduling algorithm
∗Jian Liu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3724426

to balance resource utilization across data nodes. With these in-
novations, ABase has successfully served ByteDance’s large-scale
cloud environment, supporting a total workload that has achieved
a peak QPS of over 13 billion and total storage exceeding 1 EB.

CCS Concepts
• Information systems→ Key-value stores.

Keywords
Multitenancy, Serverless, Key-Value Store, NoSQL Database

ACM Reference Format:
Rong Kang, Yanbin Chen, Ye Liu, Fuxin Jiang, Qingshuo Li, MiaoMa, Jian Liu,
Guangliang Zhao, Tieying Zhang, Jianjun Chen, and Lei Zhang. 2025. ABase:
the Multi-Tenant NoSQL Serverless Database for Diverse and Dynamic
Workloads in Large-scale Cloud Environments . In Companion of the 2025
International Conference on Management of Data (SIGMOD-Companion ’25),
June 22–27, 2025, Berlin, Germany. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3722212.3724426

1 Introduction
Serverless NoSQL databases have emerged as pivotal technolo-
gies in cloud-native environments, supporting large-scale, highly
available applications. These systems offer elastic and flexible data
storage solutions without the need for infrastructure management,
effectively meeting the demands of modern applications that re-
quire rapid deployment and significant elasticity. Cloud providers
have utilized multi-tenant architectures in their serverless NoSQL
databases. By co-locating different tenants within the same resource
pool and sharing resources [6, 16], this approach has shown substan-
tial potential in maximizing elasticity and enhancing resource uti-
lization. Several multi-tenant NoSQL databases have been deployed

https://orcid.org/0009-0005-8449-0223
https://orcid.org/0009-0002-2960-6914
https://orcid.org/0009-0009-0255-4481
https://orcid.org/0000-0002-7522-061X
https://orcid.org/0009-0006-2372-6797
https://orcid.org/0009-0005-4274-5849
https://orcid.org/0009-0008-0260-8833
https://orcid.org/0009-0004-8853-3588
https://orcid.org/0009-0003-2250-5528
https://orcid.org/0000-0002-3734-892X
https://orcid.org/0009-0004-1681-1956
https://doi.org/10.1145/3722212.3724426
https://doi.org/10.1145/3722212.3724426

SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany Rong Kang et al.

in production environments, including Amazon DynamoDB [12],
Microsoft CosmosDB [2], and Google Firestore [19].

In large-scale cloud environments, a well-implemented multi-
tenant database must address the challenges arising from diverse
workloads and dynamically evolving data requests. For instance,
ByteDance operates across a broad array of business domains, such
as e-commerce, search, social media, and AI services. Similar to
other large internet corporations, each of ByteDance’s domains
demonstrates significant workload diversity, characterized by dif-
fering requirements for resources such as throughput, storage, and
cache hit ratios across different business scenarios. Additionally,
workload dynamism is reflected in rapid changes in resource con-
sumption by tenants, like throughput surges and sharp drops in
cache hit ratios. We will analyze these aspects in detail in Section 2.

As a result, to be practical in such a large-scale cloud envi-
ronment, a multi-tenant NoSQL serverless database must fulfill
a diverse range of roles—serving as a high-speed cache, a large-
capacity persistent storage, and a foundational layer for other sys-
tems—while also meeting immense performance requirements. For
example, in ByteDance, we must manage a total peak QPS (queries
per second) exceeding 13 billion and storage capacities surpassing
1 exabyte (EB). For individual tenants, the maximum QPS can reach
450 million, and the highest storage capacity exceeds 11 petabytes
(PB). After careful research, we concluded that existing multi-tenant
NoSQL databases may not adequately meet our business needs due
to their insufficient traffic capacities and designs intended for lim-
ited scenarios. We will elaborate on this in Section 8. To effectively
manage these highly diverse and dynamic workloads, we devel-
oped ABase, a multi-tenant NoSQL database system at ByteDance.
In the course of designing, implementing, and maintaining ABase,
we have identified three unique yet significant challenges that are
typically encountered in multi-tenant NoSQL systems within large-
scale cloud environments:

Challenge 1: In high-speed caching scenarios, tenants require
frequent access to recently-updated data with low latency. ABase
incorporates both proxy and data node caches to satisfy this need.
A request hitting the cache significantly alters both the execution
process and resource consumption. However, exactly predicting
whether a request will access the cache is challenging, introducing
uncertainty and complexity into the performance isolation mecha-
nism. For example, requests that hit the proxy cache are directly
returned without entering the data node, while those that hit the
data node cache consume only CPU andmemory resources, without
disk I/O resources. This necessitates the systematic integration of
caching considerations into the isolation mechanism1. Previously
multi-tenant NoSQL databases [2, 12, 19] did not discuss cache
impact on isolation or propose cache-aware isolation mechanisms.

Challenge 2: Traffic patterns change dynamically, reflected in
two aspects: First, as tenant traffic trends increase, the pre-applied
resources (termed “quota”) may become exhausted, thereby trig-
gering throttling. Conversely, a sustained traffic decrease in tenant
traffic typically results in the wastage of these resource quotas. Sec-
ond, even when traffic volume remains constant, changes in access
distribution can lead to hot key pressure if requests concentrate

1In this paper, "isolation" specifically refers to performance isolation between tenants,
not to the isolation property in relational database ACID guarantees.

on a few keys, or significant drops in cache hit ratios if the ac-
cesses become dispersed. To our knowledge, previous multi-tenant
NoSQL systems have not integrated temporal forecasting as we
have, leaving the hot key issue unresolved.

Challenge 3: Each tenant has differing requirements on request
traffic and storage; if the layout of tenant data is not carefully
planned, it can lead to imbalanced resource utilization within and
across data nodes, thereby limiting overall resource utilization. For
instance, if all tenants assigned to a certain data node are storage-
heavy but have low traffic, this can result in high disk resource
utilization while CPU resources remain idle. Although this chal-
lenge is common in large-scale cloud environments, previously
reported multi-tenant NoSQL serverless systems have not provided
explicit implementations or algorithms to address it.

To address these challenges in large-scale cloud environments,
we have made the following innovative contributions in ABase:

(1). Cache-Aware Isolation Mechanism (Challenge 1): We
designed a cache-aware request unit (RU) that incorporates the
cache hit ratio into RU computation, and introduced request re-
strictions at both the proxy and data node layers to control traffic.
Within the data node, we implemented a dual-layer Weighted Fair
Queuing (WFQ). The CPU-WFQ schedules requests and checks their
existence in the data node cache; upon a cache miss, the I/O-WFQ
further schedules requests to retrieve data from the disk layer.

(2). Hierarchical Caching Mechanism (Challenge 2): At the
data node layer, we implemented a cache based on size-aware LRU,
employing individual eviction policies for items of different sizes to
improve the cache hit ratio. At the proxy layer, we implemented a
cache based on auto-updated LRU, along with a limited fan-out hash
strategy, to effectively address both hot keys and sharp declines in
cache hit rates.

(3). Predictive Autoscaling Policy (Challenge 2): We out-
line the challenges of workload forecasting in ABase, such as non-
periodic bursts, period diversity, and trend variability. We then
propose an ensemble-based forecasting solution that combines the
adaptive-periodic Prophet model with historical averages to achieve
accurate predictions and elastic adjustments.

(4). Multi-Resource Rescheduling Algorithm (Challenge
3): Considering the trade off between efficiency and effectiveness,
we propose a heuristic multi-resource rescheduling algorithm to
balance traffic and storage utilization across data nodes within a
resource pool. We further extend this algorithm to support the data
balancing across multiple resource pools.

(5). Production Analysis, Evaluation and Lessons: We con-
duct comprehensive experiments to validate our contributions in
large-scale cloud environments and provide detailed business anal-
ysis along with practical operational lessons. ABase has been ex-
amined for managing ten-billion-level QPS and exabyte-level data
storage. We believe the insights offered in this paper will prove
valuable to readers.

The rest of this paper is organized as follows: Section 2 intro-
duces the business scenarios and workloads in a large-scale cloud
environment, exemplified by ByteDance. Section 3 provides an
overview of ABase’s architecture and design principles. Section 4
details the system implementation of ABase. Section 5 discusses
workload management strategies, including predictive autoscaling

ABase SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany

Table 1: Diverse application scenarios and workload characteristics of ABase in ByteDance business.

Business lines Workloads Normalized
Throughput

Normalized
Storage

Ratio of
Cache Hit

Ratio of
Read

Mean K-V
Data Size

Common
TTLs

Social Media (Douyin) Comment 250 125 54% 100% 0.1KB -
Social Media (Douyin) Direct message 25 678 74% 100% 1KB -
E-Commerce Metadata tags 575 42 92% 100% 1KB -
Search Forward sorted data 1500 63 99% 100% 1KB -
Advertisement For message joiner 2750 938 18% 25% 10KB 3 hours
Recommendation For deduplication 5325 625 76% 50% 2KB 15 days
Large Language Model Remote K-V Cache 10000 5760 0% 85% 5MB 1 days

and rescheduling algorithms. Section 6 presents experimental re-
sults validating the system’s performance. Section 7 discusses key
lessons learned from ABase’s lifecycle. Section 8 reviews related
work and our analysis. Finally, Section 9 concludes the paper.

2 Background
In this section, we sketch an overview of workload diversity and
dynamism using ByteDance as a case study. We believe these phe-
nomena are also applicable to other large-scale cloud environments.

2.1 Diversity
ABase supports a broad spectrum of business lines, and Table 1
reveals significant workload diversity within and across various
business lines. For clarity, throughput and storagemetrics have been
normalized according to an empirical standard unit. If the normal-
ized throughput and storage metrics are comparable, this indicates
a balanced demand for CPU and disk resources in this workload.
The complexity of these diverse business requirements stems from
variations in data characteristics and the ways in which ABase is
utilized. First, considering the diversity within business lines, in
the Social Media sector (Douyin), two workloads for comments
and direct messages require different throughput-to-storage ratios
(250:125 and 25:678, respectively). Next, considering the diversity
across business lines, E-commerce and Search sectors demonstrate
a preference for higher throughput over storage, with cache hit
ratios exceeding 90% due to frequent reads of hot data and few up-
dates. The Advertisement and Recommendation sectors necessitate
high throughput and storage capacities. Notably, the cache hit ratio
for the Advertisement workload is a mere 18%, which can be attrib-
uted to the specific application of the advertisement message joiner,
where most data is read only once after being written. ABase sup-
ports large language models (LLM) by providing a remote caching
store for kv-cache data, facilitating the caching of key-value results
from token sequences to reduce costly recalculations during the
generation of new tokens. These workloads demand throughput
and storage capacities significantly higher than typical applications,
normalized at 10000 and 5760, respectively. LLM’s cache ratio is
0, as it bypasses caching to directly process data from underlying
logs, optimizing network bandwidth and query speed.

We further illustrate the read ratios (reflecting the operation dis-
tribution), K-V data sizes, and common TTLs (time-to-live) of these
workloads. Most workloads in Table 1 are read-heavy or balanced,

but ABase also serves write-heavy scenarios, such as the advertis-
ing business. K-V data sizes vary significantly across workloads.
For instance, document and advertisement message data sizes are 7
KB and 10 KB respectively, while social media comments are only
about 0.1 KB. Some businesses exhibit typical access patterns, with
common TTLs set at about 3 hours for advertisements, 15 days for
recommendations, and 1 day for language models.

2.2 Dynamism
Based on ABase experiences at ByteDance, we identified three
challenging workload dynamism scenarios:

(1). Throughput sharply increases: During annual shopping
events such as the Double-11 Shopping Festival and Black Friday, we
observe rapid and significant increases in throughput among many
tenants. These escalating workloads come from various sectors,
including e-commerce, advertising, and search, with traffic peaks
concentrated within a single week.

(2). Cache hit ratio sharply declines: A rapid increase in
throughput can significantly reduce cache hit ratios. Additionally,
even when throughput is stable, a business’s cache hit ratio may
still experience a substantial decline, often due to shifts in access
patterns, such as ad hoc access to large volumes of older, cold data.

(3). Emergence of Hot Keys: In sectors like social media and
search, hot events often cause a small amount of data to be heav-
ily accessed. In multi-tenant architectures, the hot key issue is
considered a "last mile" problem [12] because the system must ac-
commodate heavy traffic with a limited number of data nodes and
cannot resolve this through data partitioning and migration.

Workload dynamism is also evident in other scenarios. Adjust-
ments to the data TTL (time-to-live) can lead to rapid fluctuations in
storage capacity. For tenants across multiple data centers, changes
in traffic strategy can cause rapid shifts in traffic, read-write ratios,
and cache hit ratios. Workload dynamism manifests in varying re-
source consumption among tenants, posing challenges to elasticity,
load balancing, and tenant isolation.

3 Architecture
3.1 Data Model and Design Rationale
ABase supports the Redis protocol to ease adoption for users fa-
miliar with Redis, and enables eventual consistency. As shown in
Figure 1, the ABase system comprises a series of resource pools, each
managing a suite of tenants. A tenant can create several key-value

SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany Rong Kang et al.

Pool 2

DataNode 3

DataNode 2

DataNode 1

Pool 3

DataNode 3

DataNode 2

DataNode 1

User Space Proxy Plane
Control
Plane

Data
Plane

Predictive Autoscaler Intra-Pool & Inter-Pool ReschedulerMeta Server

T2 Proxy Groups

T3 Proxy Groups

Tenant 2
 (T2)

Tenant 3
 (T3)

Tenant 1
 (T1)

Proxy Quota AC-LRU Cache
 Limit Fan-out Hash Routing

T1 Proxy Groups Resource Pool 1

DataNode 1

T2 Partition 1 T3 Partition 1

Tenant-specific Partition Quota

SA-LRU Cache Dual-Layer WFQ

T1 Partition 1 T1 Partition 2

DataNode 2

T2 P1 T3 P1

Partition Quota

Cache WFQ

T1 P1 T1 P2

DataNode 3

T2 P1 T3 P1

Partition Quota

Cache WFQ

T1 P1 T1 P2

Figure 1: ABase multi-tenant architecture.

tables, where each table is composed of numerous items, each iden-
tified by a unique key. The data belonging to a tenant are uniformly
allocated into several contiguous and disjoint partitions accordingly.
Each partition generates multiple replicas across various Availabil-
ity Zones (AZs), thus enhancing availability and security.

ABase introduces a resource pooling concept that distributes
multiple tenants’ data across individual physical machines, form-
ing a vast resource pool. Data partitioning plays a key role in the
multi-tenant architecture. ABase divides each tenant’s data into
multiple non-overlapping partitions and strives to distribute these
partitions across different machines within the same resource pool.
The multi-tenant architecture can utilize workload diversity, al-
lowing tenants with different resource demands to be co-located,
thereby enhancing machine resource utilization.

ABase isolation adheres to two fundamental principles: Firstly,
the design of isolation must consider the impact of caching, encom-
passing RU, quota, and the request queue. Secondly, traffic control
for individual tenants should be prioritized before the traffic reaches
the shared request queue. Using dedicated resources, individual
restrictions are designed to block excessive traffic at the single-
tenant stage, thereby enabling the shared request queue to focus on
fair and efficient request processing among multiple tenants under
moderate traffic pressure, rather than rejecting enormous requests.

Continuous growth in traffic may trigger tenant throttling, while
dynamic changes in tenant traffic and storage can unbalance the
load across ABase’s data nodes. ABase adopts predictive scaling
to maintain a modest ratio between applied resources and actual
utilized resources, and deploys rescheduling algorithms to periodi-
cally balance tenant replicas both within and across resource pools.
However, neither of these measures addresses the issue of hot keys,
which we address by introducing an innovative caching strategy.

3.2 Multi-Tenant Architecture
Architecture Overview: Figure 1 depicts the overall architecture
of ABase. ABase comprises three parts: the control plane is a central-
ized management component that administers a series of resource
pools for traffic management, scaling, and rescheduling. The data
plane comprises several resource pools. Within each pool, numer-
ous DataNodes manage multiple partitions for different tenants.
The proxy plane contains tenant proxies, responsible for routing
tenant requests to the relevant data nodes.

Control Plane comprises meta server, autoscaler, and resched-
uler. The meta server serves as the centralized management module

for ABase, tasked with managing global metadata, monitoring re-
source pool health, repairing data nodes, and overseeing the scaling
and migration of data partitions. The autoscaler collects metrics
on tenant RU and storage utilization, making tenant scaling deci-
sions based on time-series forecasting. The rescheduler uses the
same metrics to trigger rescheduling events, migrating replicas
both within and between resource pools.

Data Plane contains multiple resource pools, each comprising
multiple DataNodes. Each DataNode is allocated a physical disk
along with corresponding CPU resources and manages multiple
partition replicas for a diverse range of tenants. DataNodes han-
dle partition-layer traffic control based on each tenant’s specific
partition quota. DataNodes are equipped with a cache that utilizes
Size-Aware LRU (SA-LRU) and a fine-grained Weighted Fair Queue-
ing (WFQ) module, together ensuring Quality of Service (QoS) in
multi-tenant environments.

Proxy Plane consists of proxies belonging to various tenants.
The primary function of the proxy is to route requests. Upon re-
ceiving a client-initiated request, the proxy communicates with the
MetaServer to obtain essential routing details for tenant partitions
to facilitate subsequent request retransmission. Proxies conduct the
proxy-layer traffic control based on each tenant’s specific proxy
quota. To further enhance ABase’s ability to defend against cache
hit dynamism and hot key issues, proxies are equipped with a cache
based on active-update LRU (AC-LRU), and proxies for each tenant
are organized into proxy groups that adopt a Limit Fan-out Hash
Routing strategy to enhance the cache hit ratio.

3.3 Recovery and Robustness
The multi-tenant architecture of ABase exhibits superior recov-
ery capabilities over single-tenant designs, facilitated by paral-
lel processing and resource pooling. When a DataNode fails, the
MetaServer coordinates parallel replica reconstruction across op-
erational nodes, thereby effectively utilizing multi-node disk I/O
bandwidth to accelerate recovery. This distributed approach elimi-
nates a fundamental constraint in single-tenant systems, wherein
the complete replica restoration on a single replacement node is
significantly constrained by its disk I/O limitations. Moreover, the
architecture maintains robustness while achieving higher resource
utilization through its shared resource pool. For example, in single-
tenant system with 3 replicas, resource utilization must remain
below 2/3 to accommodate potential 3/2 workload spikes during
single node failure. The multi-tenant design mitigates this impact

ABase SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany

through N-node redundancy, where load redistribution results in
only a 1/N utilization increase on surviving nodes, thus enabling
sustainable high utilization without compromising fault tolerance.

4 System Implementation
4.1 Normalized Request Unit
Request Units (RUs) are widely employed in serverless databases to
direct user focus towards request throughput demands [2, 12] and
to abstract from underlying hardware complexities. In ABase, RUs
are not only crucial for billing but also constitute a key component
of the isolation mechanism by quantifying a request’s consumption
of CPU, memory, and disk I/O. We demonstrate how ABase tailors
RU estimation to different request types, ensuring that RUs closely
reflect the actual resource consumption of operations, while taking
into account the impact of caching on resource consumption.

Write Operations: For write operations, the value size of the
written item 𝑆write is typically known, which facilitates a straight-
forward computation of 𝑅𝑈write = 𝑆write/𝑈 , where 𝑈 is the unit
byte size, empirically set to 2KB. Importantly, considering ABase’s
replication mechanism, a single user write request translates into
one direct write operation and 𝑟 − 1 synchronization operations
to other replicas (where 𝑟 is the number of replicas), resulting in a
total charge of 𝑟 · 𝑅𝑈write.

Read Operations: Since the value size and cache hit status
of read operations are not predetermined, we estimate the size
of upcoming reads, E[𝑆read], and cache hit ratios, E[𝑅hit], using
a moving average of the last 𝑘 requests. We employ E[𝑆read] for
traffic control, detailed in Section 4.2, and charge based on the
actual size returned. Requests that hit the proxy cache are directly
returned without throttling or charges. In summary, the formula
for estimating read costs is 𝑅𝑈read = E[𝑆read] × (1 − E[𝑅hit])/𝑈 .

Complex Read Operations: Challenges in estimating RUs for
complex operations stem from the unpredictable number of items a
request may scan (e.g., HLen (the number of fields in a hash table))
and the intricate multi-stage procedures involved in requests (e.g.,
HGetAll (a command to retrieve all fields and values in a hash
table)). To estimate HLen, we use historical data on the length of the
HashSet, and for HGetAll, we decompose the operation into HLen
followed by a scan, calculating the RU for each stage separately.

4.2 Hierarchical Request Restriction
ABase implements a hierarchical request restriction strategy, di-
vided into proxy-level and partition-level. As shown in Figure 2,
each tenant is assigned a dedicated set of proxies, proportional to
its allocated quota. Proxies forward their respective requests to the
DataNodes. Note that, requests that hit the proxy cache do not con-
sume any proxy quota. DataNodes route the requests to a request
queue, filtering out those that exceed predefined quotas. Remaining
valid requests are processed by the subsequent Dual-Layer WFQ
module, which will be discussed in Section 4.3.

At the proxy level, the primary duty of the proxy is to prevent
the total RUs from surpassing the tenant quota. Unlike DynamoDB,
which requires real-time interactions between request routers and
the Global Admission Control, ABase Proxy employs an asynchro-
nous traffic control strategy to minimize dependencies between

proxies and the centralized MetaServer. Each proxy receives a spe-
cific proxy_quota, calculated by dividing the tenant quota by the
number of proxies, allowing them to process up to double this
quota autonomously. To maintain the tenant’s total traffic across all
proxies within the set tenant quota, the MetaServer continuously
monitors each proxy’s traffic and, if exceeded, directs the proxies
to revert to their standard proxy_quota.

Another responsibility of the proxy is to shield tenants on DataN-
odes — which are shared among multiple tenants — from the im-
pact of co-tenants’ burst traffic. When the traffic of certain tenants
significantly escalates, the proxy designated for this tenant can
reject excess traffic, thereby preventing requests from reaching the
DataNodes. This avoidance helps reduce the extensive resource con-
sumption that would occur if DataNodes were to handle and reject
these requests, thus safeguarding the stability of other tenants.

At the partition level, DataNodes reject requests that exceed the
maximum allowed quota of a partition at the entry point, namely
the request queue. In DynamoDB, a partition is allowed to con-
sume the entire tenant quota. However, under extreme conditions,
this flexibility inevitably leads to mutual interference among co-
tenants. Elevated loads on specific tenant partitions may deplete
resources, potentially leading to service degradation as traffic surges
in previously low-load tenants. ABase explicitly introduces a parti-
tion_quota, defined as the tenant quota divided by the number of
partitions, ensuring that no single partition surpasses three times
its partition_quota. This restriction is reasonable because ABase
organizes all items in an hash partition, thus ensuring that each
partition is likely to experience even traffic. We will discuss hot key
optimization in Section 4.4.

4.3 Dual-Layer Weighted Fair Queueing
In the ABase system, each ABase DataNode may host partitions
belonging to various tenants. To ensure fair and efficient handling
of requests from various tenants, we designed a fine-grained, dual-
layer Weighted Fair Queueing (WFQ) mechanism.

As noted in 2DFQ [27], a fair and efficientWFQ is expected to pre-
vent interference between heavyweight and lightweight requests.
To achieve this objective, we have implemented a straightforward
yet robust approach. As illustrated in Figure 2, all requests are cate-
gorized into four independent dual-layer WFQs based on their type
(read/write) and their size (large/small). This categorization has
proven effective in practice, as it ensures closely matched request
latencies within each queue type.

Resource consumption by requests depends on whether they
hit the DataNode cache. Referencing SQLVM [11, 28], we designed
dual-layer queues, including CPU-WFQ and I/O-WFQ. Requests
first enter the upper CPU-WFQ for processing. If a request hits
the cache, it can be directly returned; otherwise, it proceeds to
the lower I/O-WFQ. The I/O-WFQ uses a group of basic threads to
handle normal requests, and employs additional threads to handle
requests from other tenants when basic threads are fully occupied
by a single tenant.

WFQ acts as a min-heap to prioritize requests with the cus-
tomized smallest virtual finish time (VFT). ABase has elaborately

SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany Rong Kang et al.

Small Read Large Read Small Write Large Write

T1 Proxy T1 Proxy T1 Proxy T2 Proxy T2 Proxy T3 ProxyProxy
Quota

DataNode Request QueuePartition
Quota

Two-Layer
WFQ

LavaStore (Underlying Storage Engine)

DataNode
Cache

CPU WFQ

IO WFQ

Basic
Threads

Extra
Threads

Thread Pool

T1
SR1

T1
SR2

T2
SR1

T3
SR1

CPU WFQ

IO WFQ

Basic
Threads

Extra
Threads

Thread Pool

T1
SR1

T1
SR2

T2
SR1

T3
SR1

CPU WFQ

IO WFQ

Basic
Threads

Extra
Threads

Thread Pool

T1
SR1

T1
SR2

T2
SR1

T3
SR1

CPU WFQ

IO WFQ

Basic
Threads

Extra
Threads

Thread Pool

T1
SR1

T1
SR2

T2
SR1

T3
SR1

Figure 2: Cache-aware performance isolation.

designed the VFT to ensure efficient and fair execution among vari-
ous tenant requests. The VFT of a request is formulated as follows:

wReqCost(𝑄𝑖) =
Cost(𝑄𝑖)

wPartition(𝑄𝑖)
=

Cost(𝑄𝑖)
𝑄𝑖/

∑
𝑄𝑝

VFT(𝑄𝑖) = preVFT𝑇𝑖 +wReqCost(𝑄𝑖)

A request’s cost is weighted according to its partition quota, where
a higher proportion of the partition quota in the DataNode (denoted
by wPartition) leads to a higher weight cost (denoted by wReqCost).
Moreover, the VFT for all requests from the same tenant is cumula-
tive, thereby preventing scenarios where a single tenant’s requests
are consistently prioritized high, even if that tenant has a larger
partition quota or lower request costs.

Furthermore, to address challenges encountered in practical de-
ployments, we introduced the following enhancements:

Rule 1: We defined different Cost(𝑄𝑖) for requests in CPU-WFQ
and I/O-WFQ. For CPU-WFQ, costs are based on RU, while for
I/O-WFQ, they are determined by the request’s IOPS. This is based
on observing that in ABase, a single I/O operation generally has a
similar execution time, regardless of request detail.

Rule 2: In CPU-WFQ, concurrency limits are enforced on both
read and write requests to ensure stable latency [13]. For write
operations, in addition to managing concurrency, we impose a ceil-
ing on the total RU to enhance stability of write latencies during
compaction and garbage collection processes in the LavaStore stor-
age engine [43]. This strategy is essential in preventing significant
throughput oscillations within the storage engine.

Rule 3: All requests from a single tenant can occupy at most 90%
of the CPU-WFQ resources, even if that tenant has a substantial
partition quota. This rule is designed to prevent significant delays
in other tenants’ requests during traffic bursts from a single tenant.

Rule 4: If all basic threads in the I/O-WFQ thread pool are mo-
nopolized by tasks from one tenant, we temporarily increase extra
threads to handle tasks from other tenants. This strategy relies on
the assumption that simultaneous high traffic from two tenants
on a DataNode is unlikely; therefore, a few additional threads are
sufficient to manage such conflicts.

4.4 Dual-Layer Caching
Proxy-Layer Cache: Hot key management presents a critical chal-
lenge for key-value databases, particularly during high-traffic sce-
narios such as major promotional events. Previously discussed tech-
niques, such as partition splitting and rescheduling, have proven
inadequate to manage the strain placed by high-frequency access
to a few hot keys on a single data node [12]. Traditional caching
approaches face limitations due to proxy memory constraints, typi-
cally less than 10GB, leading to frequent cache evictions and sub-
optimal hit ratios under random routing schemes.

To address these challenges, we propose a dual-component op-
timization framework comprising a proxy-side cache module and
client routing strategy. The proxy layer implements an Active-
Update LRU (AU-LRU) mechanism that bypasses DataNode ac-
cesses if the proxy cache is hit. An active-update mechanism is
applied to address potential spikes in requests due to expired cache
entries. It automatically refreshes hot keys as they near expiration,
thus maintaining the timeliness and continuity of the cached data.
On the client side, we adopt a limited fan-out hash strategy to
determine the destination of requests. The tenant’s 𝑁 proxies are
divided into 𝑛 groups. When a tenant accumulates a list of requests,
each request is hashed to one of the 𝑛 ProxyGroups using a custom
hashing function. This group of requests will randomly choose
one proxy from this hashed ProxyGroup to send out. By carefully
adjusting 𝑛, tenants can optimize the balance between hit ratio
and hot key pressure. Because each proxy receives 1/𝑛 of the total
requests, a larger 𝑛 results in a higher cache hit ratio for each proxy.
During hot key events, selecting a smaller 𝑛 value facilitates load
distribution across a larger number of proxies (= 𝑁 /𝑛).
DataNode-Layer Cache: Workload diversity necessitates the man-
agement of a broad spectrum of key-value data sizes. Inspired by
these considerations, we developed a DataNode-layer cache that
utilizes the enhanced Size-Aware LRU strategy (SA-LRU). This strat-
egy, SA-LRU, strategically evicts data that occupies more memory
while yielding fewer cache hits, effectively managing memory more
efficiently. By prioritizing the retention of smaller-sized data, which
typically incurs lower access costs, SA-LRU not only optimizes re-
source utilization but also enhances the overall cache hit ratio.

5 Workload Management
5.1 Predictive AutoScaling
Algorithm 1 shows the details of the ABase scaling policy. Details
on workload forecasting and resource rescheduling are further ex-
plored in subsequent sections (Section 5.2 and Section 5.3). In the
ABase system, quotas are categorized into RU (Request Unit) and
Storage, each allowing for independent scaling by tenants. Suppose
a tenant with tenant quota 𝑄𝑇 , number of partitions 𝑁 , and its
partition quota 𝑄𝑃 . We forecast the resource usage in next 7 days
based on a 30-day historical series as𝑈𝑚𝑎𝑥 . When the forecasted
usage exceeds the upper threshold (0.85) or falls below the lower
threshold (0.65) of the tenant quota, scaling up or down is trig-
gered accordingly. After scaling up, if the partition quota exceeds
the quota upper bound UP, a partition split is triggered; after scal-
ing down, we ensure that the partition quota does not fall below
the quota lower bound LOWER to accommodate occasional traffic
bursts from tenants. Scaling operations result in changes to the

ABase SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany

distribution of partition quotas and usage; thus, ABase continu-
ously invokes the rescheduling strategy to balance the utilization
of DataNodes within the resource pool.

Algorithm 1 ABase Scaling Policy
Require: 𝑄𝑇 , 𝑁 ,𝑈𝑚𝑎𝑥

1: if 𝑈𝑚𝑎𝑥 > 0.85 ×𝑄𝑇 then
2: 𝑄𝑇 ← 𝑈𝑚𝑎𝑥/0.65;
3: 𝑄𝑃 ← 𝑄𝑇 /𝑁 ;
4: if 𝑄𝑃 > UP then
5: Trigger partition split so that 𝑄𝑃 ← 0.5 ×𝑄𝑃

6: end if
7: else if 𝑈𝑚𝑎𝑥 < 0.65 ×𝑄𝑇 and not scaled in last 7 days then
8: 𝑄𝑇 ← 𝑈𝑚𝑎𝑥/0.65;
9: 𝑄𝑃 ← max(𝑄𝑇 /𝑁, LOWER)
10: end if
11: Invoking rescheduling strategy periodically.
12: Continue to forecast the max usage𝑈𝑚𝑎𝑥 in next 7 days.

5.2 Workload Forecasting
The workload forecasting module is crucial in the ABase autoscal-
ing. It processes resource usage metrics from the past 30 days,
downsampled to 1-hour intervals, along with their quota records,
and predicts the resource usage trends for the next 7 days to inform
scaling decisions. Although time-series based scaling strategies
are commonly utilized in cloud services [10, 30, 32–35, 37, 47, 49],
ABase faces several complex challenges in practice:

Issue 1: Sporadic Bursts and Metric Noise: ABase must be
cautious with scaling operations, which involve costly processes
such as partition migration and resource pool scaling. Sporadic
bursts, which may be ad-hoc and temporary, should not trigger
unnecessary upscaling. Furthermore, metrics erroneously recorded
during partition migrations or master node transitions can lead to
their misinterpretation as transient bursts.

Issue 2: Period Diversity and Trend Variability: The period-
icity of the ABase workload is highly diverse. Apart from standard
daily and weekly cycles, it includes various uncommon periods,
such as 3.5 days, often attributed to specific tenant TTL configura-
tions. Significant trend variations frequently occur within individ-
ual series, typically due to business adjustments and data cleaning.

Issue 3: Consistent Non-periodic Bursts: For some tenants,
peaks occur daily at varying times without regular periodicity.
These should not be dismissed as mere outliers. Accurately predict-
ing these bursts’ maximum value is crucial for appropriate ABase
scaling decisions.

To address these issues, we have developed an ensemble-based
forecasting solution. In the preprocessing phase, we apply multi-
metric collaboration for denoising. If Usage and Quota metrics
simultaneously show spikes, these are considered noise and filtered
out, as such simultaneous occurrences are nearly impossible in prac-
tice. Additionally, we use heuristic methods to eliminate sporadic
peaks, likely due to accidental events, such as those appearing only
once in the past 10 days. We also utilize change point detection
methods to identify trend shifts, thereby focusing the forecasting
algorithms more on recent data changes (for Issue 1).

During the forecasting phase, we initially use power spectral
density (PSD) [42] analysis to determine the time series’ periodic-
ity. Subsequently, we employ a weighted ensemble of predictions
derived from both the Prophet [41] and historical average meth-
ods [39]. The Prophet model is effective for time series with clear
trends and periods, while the historical average provides stable
forecasts, especially suitable when trend changes are minimal (for
Issue 2). For consistent non-periodic bursts, if the forecasts are sig-
nificantly lower than historical input data, we directly use the most
recent period’s historical data for predictions to avoid unnecessary
downscaling (for Issue 3).

We have alao investigated other deep learning-based methods,
like TFT [24], AutoFormer [46], N-Beats [31] and N-Hits [7]. Al-
though these models yield high-quality forecasts after pre-training,
our ensemble-based approach maintains comparable precision and
robustness, seamlessly adapting to new tenants with emerging
trend characteristics without the need for retraining.

5.3 Workload Rescheduling
To address imbalanced DataNode utilization from diverse work-
loads, ABase incorporates a novel resource rescheduling module.
This module uses a heuristic approach to balance efficiency and
effectiveness, with two components: intra-pool, focusing on reallo-
cations within a single pool, and inter-pool, managing reallocations
across different pools to optimize resource utilization.

The intra-pool rescheduling algorithm primarily consists of
two phases. The first phase aims to balance the replica distribution
for each tenant, distributing the count of a tenant’s replicas across
DataNodes as evenly as possible, thus enhancing elasticity and ro-
bustness against failures. The second phase aims to balance resource
utilization across all DataNodes within a resource pool, involving
two resource dimensions (RU and storage) without compromising
the previously established replica balance. Both phases use simi-
lar heuristic algorithms; for brevity, we next focus on a detailed
explanation of the second phase, resource utilization rescheduling.

(1). Load Indicator: We characterize the resource load (e.g.,
RU, Storage) of a Replica (RE), DataNode (DN), Resource Pool
(RP) as follows. First, the load of each replica is aggregated based
on the hourly average, retaining load data from the past seven
days. This data is then aggregated by taking the maximum value
within the hour-of-day dimension to derive the load vector 𝑅𝐸𝑙𝑑 =

(𝑅𝐸𝑙𝑑1 , · · · , 𝑅𝐸𝑙𝑑24). Note that the RU load incorporates the weighted
factors of read RU, write RU and the cache hit ratio.

Second, the load vectors of all replicas on the DataNode or Re-
source Pool are summed and the maximum value of the resulting
vector is computed. The specific calculation formula is as follows:

𝐷𝑁 𝑙𝑑 (𝑅𝑃𝑙𝑑) = max
𝑖

©«
∑︁

𝑅𝐸∈𝐷𝑁 (𝑅𝑃)
𝑅𝐸𝑙𝑑𝑖

ª®¬ for 𝑖 ∈ {1, 2, ..., 24}

where 𝐷𝑁 𝑙𝑑 (𝑅𝑃𝑙𝑑) represents the resource load of the DataN-
ode(Resource Pool).

(2). Optimal Load: Considering the necessity to balance re-
source load across multiple dimensions (RU, Storage), the optimal

SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany Rong Kang et al.

load vector (𝑅, 𝑆) within a single resource pool is defined as follows:

⟨𝑅, 𝑆⟩ =
(
𝑅𝑃𝑙𝑑𝑟𝑢

𝑅𝑃
𝑐𝑎𝑝
𝑟𝑢

,
𝑅𝑃𝑙𝑑𝑠𝑡𝑜

𝑅𝑃
𝑐𝑎𝑝
𝑠𝑡𝑜

)
where 𝑅𝑃𝑙𝑑𝑟𝑢 (𝑅𝑃𝑙𝑑𝑠𝑡𝑜) represents the RU (Storage) load of the resource
pool, and 𝑅𝑃𝑐𝑎𝑝𝑟𝑢 (𝑅𝑃

𝑐𝑎𝑝
𝑠𝑡𝑜) represents the total RU (Storage) capacity

of the resource pool.
(3). Migration Gain: To quantify the benefits of migrating a

replica 𝑅𝐸 to 𝐷𝑒𝑠_𝐷𝑁 (the Destination DataNode), we initially
define the deviation between a DataNode’s load with optimal load.
We employ the L2-Norm Loss to evaluate this deviation as follows:

L(𝐷𝑁) =

√√
(𝐷𝑁

𝑙𝑑
𝑟𝑢

𝐷𝑁
𝑐𝑎𝑝
𝑟𝑢

− 𝑅)2 + (
𝐷𝑁 𝑙𝑑

𝑠𝑡𝑜

𝐷𝑁
𝑐𝑎𝑝
𝑠𝑡𝑜

− 𝑆)2

where𝐷𝑁 𝑙𝑑
𝑟𝑢 (𝐷𝑁 𝑙𝑑

𝑠𝑡𝑜) represents the RU (Storage) load of the DataN-
ode, 𝐷𝑁𝑐𝑎𝑝

𝑟𝑢 (𝐷𝑁
𝑐𝑎𝑝
𝑠𝑡𝑜) represents the total RU (Storage) capacity of

the DataNode.
Therefore, whenmigrating the replica 𝑅𝐸 from its current DataN-

ode (𝑅𝐸.𝐷𝑁) to the destination DataNode (𝐷𝑒𝑠_𝐷𝑁), we quantify
the migration’s gain by the reduction in maximum load across both
nodes post-migration. A decrease in maximum load indicates a
positive gain, signifying improved load distribution:

G(𝑅𝐸, 𝐷𝑒𝑠_𝐷𝑁) = max[L(𝑅𝐸.𝐷𝑁),L(𝐷𝑒𝑠_𝐷𝑁)]−
max[L(𝑅𝐸.𝐷𝑁 .𝑅𝑒𝑚𝑜𝑣𝑒 (𝑅𝐸)),L(𝐷𝑒𝑠_𝐷𝑁 .𝐴𝑑𝑑 (𝑅𝐸)]

where 𝑅𝐸.𝐷𝑁 .𝑅𝑒𝑚𝑜𝑣𝑒 (𝑅𝐸) represents 𝑅𝐸.𝐷𝑁 removing 𝑅𝐸, and
𝐷𝑒𝑠_𝐷𝑁 .𝐴𝑑𝑑 (𝑅𝐸) represents 𝐷𝑒𝑠_𝐷𝑁 adding 𝑅𝐸.

(4). DataNode Division: Workload rescheduling is based on
the heuristic of migrating replicas from high-loaded DataNodes
to low-loaded DataNodes. Specifically, DataNodes are divided into
three groups based on their load levels: S𝐿 (Low Load DataNodes),
S𝑀 (Medium Load DataNodes), S𝐻 (High Load DataNodes). Using
the RU load as a case study, the DataNodes are divided as follows:

DN ∈ S𝐿, if
𝐷𝑁 𝑙𝑑

𝑟𝑢

𝐷𝑁
𝑐𝑎𝑝
𝑟𝑢

≤ 𝑅 − 𝜃

DN ∈ S𝑀 , if 𝑅 − 𝜃 <
𝐷𝑁 𝑙𝑑

𝑟𝑢

𝐷𝑁
𝑐𝑎𝑝
𝑟𝑢

≤ 𝑅

DN ∈ S𝐻 , others

where 𝜃 is the manually set threshold, such as 5%.
Algorithm 2 outlines the intra-pool workload rescheduling pro-

cess. For each resource type, we categorize DataNodes into three
groups:S𝐿 ,S𝑀 , andS𝐻 . The algorithm iterates over each high-load
DataNode (𝑆𝑟𝑐_𝐷𝑁) in S𝐻 , excluding those with ongoing replica
migrations. For each eligible 𝑆𝑟𝑐_𝐷𝑁 , the algorithm examines each
replica 𝑅𝐸 on it. It then considers all low-load DataNodes (𝐷𝑁)
in S𝐿 that meet two criteria: 𝐷𝑁 .𝐶𝑎𝑛𝑃𝑙𝑎𝑐𝑒 (𝑅𝐸), which preserves
the uniform distribution of table replicas without overloading 𝐷𝑁
into the high-load setS𝐻 , and𝐷𝑁 .𝐼𝑠𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑛𝑔(𝑅𝐸), which verifies
the absence of ongoing replica migration on 𝐷𝑁 . The process con-
cludes by selecting the replica 𝑅𝐸𝑚𝑜𝑣𝑒 and destination DataNode
𝐷𝑒𝑠_𝑁𝑜𝑑𝑒 that maximize the gain function G(𝑅𝐸, 𝐷𝑁). A positive
gain triggers the execution of the migration.

In terms of the inter-pool rescheduling algorithm, it pri-
marily focuses on reallocating DataNodes between resource pools,

Algorithm 2 Intra-Pool Workload Rescheduling

Require: {𝐷𝑎𝑡𝑎𝑁𝑜𝑑𝑒𝑠}
1: for resource in [RU, Storage] do:
2: S𝐿 , S𝑀 , S𝐻 = Division({𝐷𝑎𝑡𝑎𝑁𝑜𝑑𝑒𝑠}, resource)
3: for 𝑆𝑟𝑐_𝐷𝑁 in S𝐻 do:
4: if 𝑆𝑟𝑐_𝐷𝑁 .𝐼𝑠𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑛𝑔 == 𝑇𝑅𝑈𝐸 then:
5: Continue
6: end if
7: 𝐺𝑎𝑖𝑛𝑏𝑒𝑠𝑡 = 0
8: for 𝑅𝐸 in 𝑆𝑟𝑐_𝐷𝑁 .𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 do:
9: for 𝐷𝑁 in S𝐿 do:
10: if 𝐷𝑁 .𝐶𝑎𝑛𝑃𝑙𝑎𝑐𝑒 (𝑅𝐸) == 𝐹𝐴𝐿𝑆𝐸 then:
11: Continue
12: end if
13: if 𝐷𝑁 .𝐼𝑠𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑛𝑔 == 𝑇𝑅𝑈𝐸 then:
14: Continue
15: end if
16: if G(𝑅𝐸, 𝐷𝑁) > 𝐺𝑎𝑖𝑛 then:
17: 𝐷𝑒𝑠_𝐷𝑁 = 𝐷𝑁

18: 𝑅𝐸𝑚𝑜𝑣𝑒 = 𝑅𝐸

19: 𝐺𝑎𝑖𝑛𝑏𝑒𝑠𝑡 = G(𝑅𝐸, 𝐷𝑁)
20: end if
21: end for
22: end for
23: if 𝐺𝑎𝑖𝑛𝑏𝑒𝑠𝑡 > 0 then:
24: Migration(𝑅𝐸𝑚𝑜𝑣𝑒 , 𝑆𝑟𝑐_𝐷𝑁 , 𝐷𝑒𝑠_𝐷𝑁)
25: 𝑆𝑟𝑐_𝐷𝑁 .𝐼𝑠𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑇𝑅𝑈𝐸

26: 𝐷𝑒𝑠_𝐷𝑁 .𝐼𝑠𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑇𝑅𝑈𝐸

27: end if
28: end for
29: end for

which can be readily extended from the intra-pool algorithm. For
example, to balance the resource utilization between two resource
pools, 𝑃𝑜𝑜𝑙𝐻 (with higher load) and 𝑃𝑜𝑜𝑙𝐿 (with lower load), we
tend to vacate a portion of the DataNodes from 𝑃𝑜𝑜𝑙𝐿 and reallocate
them to 𝑃𝑜𝑜𝑙𝐻 . Initially, we select some low-utilization DataNodes
from 𝑃𝑜𝑜𝑙𝐿 and migrate replicas from these selected DataNodes
to others within the same pool (𝑃𝑜𝑜𝑙𝐿). Then, we reassign these
vacated DataNodes to 𝑃𝑜𝑜𝑙𝐻 . Finally, we invoke the intra-pool al-
gorithm to re-balance the load within the two resource pools.

6 Experiments
6.1 Production Statistics
Diversity Analysis: We present real production statistics from
a specific resource pool at ByteDance in Figure 3, each circle rep-
resents a tenant in this pool, with the horizontal and vertical axes
showing the tenant’s average RU and storage usage over the past
month, respectively. The color of each circle indicates the read op-
eration ratio of the tenant, with darker colors indicating a higher
read ratio. Generally, tenants with higher RU tend to have larger
storage capacities, yet there are numerous cases exhibiting diverse
RU/storage characteristics. In terms of the read ratio, it can be ob-
served that tenants with a larger ratio of RU to storage (the lower
right corner of Figure 3) tends to indicate a read-heavy workload.

ABase SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany

Figure 3: Distribution of tenants by RU, storage, and read ra-
tio. Each point represents one tenant, normalized by median.

0 50 100
Percentile

0%

50%

100%

La
te

nc
y

to
 S

LA SLA
max (66.0%)
p90 (24.0%)
p50 (11.2%)

(a) Latency to SLA

0 50 100
Percentile

0%

50%

100%

Ca
ch

e
Hi

t R
at

io

p99 (100.0%)
p90 (99.9%)
p50 (93.5%)

(b) Cache Hit Ratio

0 50 100
Percentile

0%

50%

100%

Re
ad

 R
at

io

p99 (99.9%)
p90 (97.6%)
p50 (39.3%)

(c) Read Ratio

0 50 100
Percentile

10 1

101

103

K-
V

Si
ze

 (K
B) p99 (308 KB)

p90 (50 KB)
p50 (0.12 KB)

(d) Average K-V Size

Figure 4: Metric values across tenant percentiles.

Figure 4 provides detailed metrics statistics. Figure 4a shows
that all tenants on this resource pool experience latencies (P99)
significantly below the SLA threshold (Service Level Agreement,
red horizontal line). Exceeding SLA threshold indicates a failure to
meet tenant demands. All tenants maintain latencies below 66.0%
of SLA, 90% of tenants are under 24.0% of SLA, and 50% of tenants
under 11.2%. These low latencies demonstrate that ABase effectively
supports diverse business needs and enhances performance stability,
making it difficult for even significant traffic bursts to result in SLA
violations. Figure 4b shows the distribution of the cache hit ratio
among tenants. Over 50% of tenants have a cache hit ratio over
93.5%, consistent with the low latency observed in most tenants
(Figure 4a). Figure 4c shows the distribution of read operation ratios
among tenants: 50% of ABase tenants have a read ratio of less than
39.3% (write-heavy), while a significant proportion of tenants have
a read ratio exceeding 50% (read-heavy). Finally, Figure 4d shows
the distribution of the average key-value size among tenants. The
median size is 0.12KB, with a few tenants having significantly larger
sizes; on this resource pool, the 90th and 99th percentile key-value
sizes are 50KB and 308KB, respectively.
Dynamism Analysis: To demonstrate how effectively ABase han-
dles the dynamic workloads at ByteDance, metrics were collected
for tenants, including RU usage, cache miss ratio, and latency dur-
ing the Double-11 Shopping Festival, a period characterized by

intense E-Commerce activities that significantly alter the usual
workload characteristics of many tenants. During the Double-11
period, more than 25% of tenants in this resource pool exhibited
significant increases in QPS or notable fluctuations in cache hit
ratios. We illustrate some representative examples in Figure 4. From
Figure 5a to Figure 5c, all three tenants exhibited traffic increases,
but their cache hit ratios varied. The cache hit ratio of Figure 5a was
virtually unaffected, remaining consistently at 100%; in Figure 5b,
the cache hit ratio significantly decreased by over 20% following an
increase in tenant traffic, due to a broad distribution of requested
keys leading to increased cache eviction. Figure 5c shows a 10%
increase in the cache hit ratio following a surge in tenant traffic,
attributable to hot-key scenarios. In contrast to Figure 5a, Figure 5d
depicts a decrease of approximately 10% in the cache hit ratio de-
spite stable traffic levels. The tenant in Figure 5e experienced a
traffic peak lasting about 3 days, during which the cache hit ratio
plummeted from 100% to about 2%.

Despite the various workload changes among ABase’s tenants,
the latency for all tenants remained stable, still fully meeting the
SLA requirements. This can be explained using Figure 5f, which
shows changes in total traffic, average cache hit ratio, and average
latency at the resource-pool level. Benefiting from ABase’s multi-
tenant design, the resource capacity of the resource pool far exceeds
the variation in individual tenant demands, allowing tenants to
share reserved resources and thus providing ample capacity to
handle changes in tenant loads. As a result, despite significant loads
during the Double-11 shopping festival, overall pool traffic and
cache hits remained stable.

6.2 Performance Isolation
This section examines the effectiveness of the proxy quota, partition
quota, and the dual-layerWFQmechanism through ablation studies
on synthetic workloads.

Proxy Quota. As shown in Figure 6, the experimental setup
involved hosting partition replicas for two tenants on a single
DataNode, with the proxy initially disabled. Initially, both tenants
experienced low traffic volumes, and all requests were processed
successfully with minimal latency. At the 10-minute mark, Tenant
1 initiated a traffic burst that significantly exceeded their assigned
tenant quota (indicated by the red line). In the absence of the proxy’s
interception, these requests overwhelmed the DataNode’s request
queue. Tenant 1’s success QPS reached the partition quota, and the
requests exceeding this quota were returned as errors. The DataN-
ode expended considerable resources rejecting Tenant 1’s excessive
requests, which severely disrupted the processing of Tenant 2’s
legitimate requests. Consequently, Tenant 2 was severely impacted
by Tenant 1’s burst, with their success QPS beginning to decline,
nearly reaching zero. At the 35-minute mark, upon activating Ten-
ant 1’s proxy (indicated by the green line), the proxy efficiently
intercepted traffic exceeding Tenant 1’s tenant quota, enabling the
DataNode to efficiently manage the remaining traffic. Subsequently,
latency levels for both tenants returned to low values, and Tenant
2’s QPS recovered to the pre-burst levels.

Partition Quota and Dual-Layer WFQ. As shown in Figure 7,
we conducted a simulation experiment to validate the efficacy of
partition-level restrictions and the dual-layer WFQ mechanism.

SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany Rong Kang et al.
QP

S
Ca

ch
e

Hi
t

11-01 11-03 11-05 11-07 11-09 11-11

La
t

(a) QPS increases, cache hit ratio
remains stable.

QP
S

Ca
ch

e
Hi

t

11-01 11-03 11-05 11-07 11-09 11-11

La
t

(b) QPS increases, cache hit ratio
decreases.

QP
S

Ca
ch

e
Hi

t

11-01 11-03 11-05 11-07 11-09 11-11

La
t

(c) Both QPS and cache hit ratio
increase.

QP
S

Ca
ch

e
Hi

t

11-01 11-03 11-05 11-07 11-09 11-11

La
t

(d) QPS remains stable, cache hit
ratio decreases.

QP
S

Ca
ch

e
Hi

t

11-01 11-03 11-05 11-07 11-09 11-11

La
t

(e) QPS increases shortly, cache
hit ratio decreases.

QP
S

Ca
ch

e
Hi

t

11-01 11-03 11-05 11-07 11-09 11-11

La
t

(f) At resource pool scale: QPS
and cache hit ratio remain stable.

Figure 5: Tenant latency is stable amid workload fluctuations
during the Double-11 Shopping Festival. Subfigures show
QPS, cache hit ratio, and latency from top to bottom.

Tenant 1
Traffic Burst

Turn On Proxy
Quota Restriction

Figure 6: Effectiveness of proxy quota

The setup, similar to a previous experiment, hosted two tenants’
partition replicas on a single DataNode. Initially, both tenants main-
tained normal QPS and latency levels under low traffic conditions,
with the partition quota disabled.

At the 10-minute mark (indicated by the red line), we modeled a
skewed partition traffic scenario for Tenant 1, directing a significant
volume of traffic to Tenant 1’s partition. Since the current traffic
did not exceed the tenant quota, the proxy-level restriction did not

Tenant 1
Traffic Burst

Turn On Partition
Quota Restriction

Figure 7: Effectiveness of partition quota and WFQ

0d 7d 14d 21d
Di

sk
 U

sa
ge

Actual
Quota

10d Predict
17d Predict

(a) A scaling case

Jul Aug SepOct NovDec Jan
2023

Feb

On
ca

ll
Co

un
t

Weekly Oncall Counts
Deploy AutoScaling

(b) Oncall decrease

Figure 8: Oncall (urgent contact) amount decreases by 65%.

reject any requests, resulting in zero error QPS for Tenant 1. Subse-
quently, the dual-layer WFQ mechanism was activated, aiming to
ensure that the service capacity deployed on the DataNode’s parti-
tion quota was proportional across tenants. Although Tenant 2’s
success QPS inevitably decreased by 25%, the latency remained un-
affected, indicating that the dual-layer WFQ mechanism preserved
Tenant 2’s isolation. However, for Tenant 1, the lack of DataNode
limitations meant that ABase had to process all incoming requests,
which led to a twenty-fold increase in latency, significantly degrad-
ing its quality of service. At the 37-minute mark, we enabled the
partition quota (indicated by the green line). Tenant 1’s success QPS
rapidly dropped to 3,000, matching the partition quota limit, and
requests exceeding this threshold were rejected by the DataNode
as error QPS. The success QPS for Tenant 2 also returned to its
normal levels. Importantly, the latency for successful requests for
both tenants was maintained at a low throughout the experiment.

6.3 Elasticity
This section shows the effectiveness of ABase’s predictive scaling
policy, using statistics from historical records. Figure 8a illustrates
an online scaling example in the search business, where the disk
usage (blue line) shows a 24-hour periodicity with an increasing
trend. The tenant quota is depicted by the red line. On day 10,
ABase predicted the usage would reach 85% of the quota within a
week (orange line), prompting a proactive quota increase to keep
predicted usage below 65%. This adjustment matched actual usage,
as shown in Figure 8a, effectively preventing user throttling.

ABase SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany

To demonstrate the business impact of the automatic scaling
mechanism, we tracked the change in the number of upscaling
oncalls (i.e. urgent contacts to technical support staff) over approx-
imately six months before and after the deployment, as depicted
in Figure 8b. Only up-scaling related oncalls are displayed. The
occurrence of emergency oncalls likely indicates that users have ex-
perienced throttling, thus impacting the business. After deployment,
the number of oncalls decreased by approximately 65%, signifying
a significant alleviation in user throttling.

6.4 Resource Utilization
To demonstrate the effectiveness of our rescheduling mechanisms,
we first conducted offline experiments on a resource pool compris-
ing 1000 DataNodes. As shown in Figure 9a, the original storage
and RU utilization of the DataNodes were highly dispersed, indicat-
ing that the load on the DataNodes was extremely uneven, which
limited the rapid scaling of tenants on them. Following the applica-
tion of Algorithm 2, as shown in Figure 9b, the load distribution
across DataNodes was more balanced, with a 74.5% reduction in the
standard deviation of RU usage and an 84.8% decrease in storage
usage variance.

(a) Before Rescheduling (b) After Rescheduling

Figure 9: The resource utilization (Util.) for RU and Storage
among DataNodes is improved through rescheduling.

This algorithm has been deployed in the online environment,
executing once every 10 minutes. The changes in RU usage for a re-
source pool are illustrated in Figure 10. Following the rescheduling
algorithms, the maximum RU utilization among DataNodes increas-
ingly converged towards the average RU utilization. Consequently,
the proposed rescheduling algorithm effectively mitigates resource
skewness, facilitating better resource utilization and reducing the
risk associated with highly loaded DataNodes.

From the perspective of overall production statistics, powered by
the data rescheduling, ABase achieves higher resource utilization
compared to the single-tenant ABase-Pre. The average utilization

0 20 40 60 80 100
Time (hours)

QP
S

Maximum QPS Among Datanodes
Average QPS Among Datanodes
Start Rescheduling

Figure 10: Rescheduling strategy reduces maximum QPS
among DataNodes, indicating greater balance.

rates of CPU, Memory, and Disk for each machine in ABase-Pre
were only 17%, 52%, and 27%, respectively. After upgrading to ABase,
these rates increased to 44%, 63%, and 46%. This is because in the
single-tenant design, the resources of low-utilization tenant cannot
be reallocated to other tenants; moreover, as mentioned in Section 3,
ABase-Pre must restrict the upper limit of resource utilization to
tolerate single-node failures. Contrastively, the multi-tenant ABase
eliminates machines with low utilization and enables resource pools
to achieve higher utilization rates without sacrificing robustness.

6.5 Cache Effectiveness

Table 2: Benefit summary by proxy cache.

Tenants #Proxy #Group Cache Hit Ratio RU Saving

Social Media 1 375 75 5%→ 86% 85%
Social Media 2 1626 32 5%→ 67% 70%
Social Media 3 11530 15 10%→ 33% 38%
E-Commerce 1 790 15 24%→ 60% 61%
E-Commerce 2 1511 15 24%→ 60% 57%
E-Commerce 3 4204 15 24%→ 60% 79%

We validated the effects of the proxy cache on six tenants within
the Social Media and E-Commerce sectors. As shown in Table 2,
the tenant Social Media 1 experiences extremely tight RU quotas
during holiday periods, often resulting in throttling. Despite having
375 proxies, the original cache hit ratio was only 5%. After activat-
ing the proxy cache and dividing the 375 proxies into 75 groups,
this adjustment increased the cache hit ratio to 86%, significantly
reducing the underlying load and saving 85% of RU for this tenant.
Note that this change is very lightweight, solely altering the traf-
fic routing proxy strategy. Similarly, for the remaining two Social
Media tenants, the cache hit ratios improved by 62% and 23%, with
RU savings of 70% and 38%, respectively. For the three E-commerce
tenants, the cache hit ratios increased from 24% to 60%, with RU
savings of 61%, 57%, and 79% respectively.

7 Lessons in Practice
Resource Allocation. We regulate the size of the resource pool
to ensure that its idle resources exceed the quota of any single
tenant. In practice, we ensure that the size of the resource pool
is at least ten times the quota of any single tenant. Furthermore,
at least 20% of the resource pool consists of idle resources. This
arrangement guarantees sufficient elasticity for any tenant while
ensuring a controlled proportion of idle resources.

Resource Isolation: While increasing the scale of resource
pools can enhance tenant elasticity when there is a significant pro-
portion of idle resources, we recommend limiting the maximum
number of tenants within a single resource pool and the maximum
scale of each pool. Lessons learned from failures suggest that main-
taining a moderate number of resource pools and tenants is crucial,
which can avoid a large failure radius that could potentially lead
to severe online incidents. Furthermore, given that the aggregate
quota of resource pools should substantially exceed that of any in-
dividual tenant, we correspondingly regulate the maximum quota
for each tenant.

SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany Rong Kang et al.

Handling Spiky Workloads. To ensure rapid, second-level
elastic scaling capabilities for tenants, we not only guarantee the
reservation of idle resources at the entire resource pool level but
also ensure a significant balance at the individual machine level.
The idle resources are noticeably greater than any single tenant’s
quota at the same level, enabling each tenant to at least double their
quota in the short term to accommodate sudden traffic changes.

Auto-scaling Principles. ABase approaches downscaling cau-
tiously, prioritizing business stability. Overly aggressive downscal-
ing might necessitate re-upscaling should business traffic rebound.
Furthermore, even for tenants whose utilization has decreased but
quota remains unscaled, this does not entail significant waste. A re-
source pool contains multiple tenants sharing idle resources. Some
tenants’ idle resources support others’ burst traffic and growth,
thereby maintaining a stable resource utilization rate.

8 Related Works
8.1 NoSQL Serverless Databases
Traditional NoSQL databases, such as Cassandra [22], have made
substantial contributions to distributed database systems by em-
phasizing scalability, fault tolerance, and innovative consistency
models, employing techniques such as sharding and replication.
These systems excel in scenarios that require high write throughput
and flexible schema designs for unstructured data. However, their
architectures, originally designed for static resource allocation in
single-tenant and on-premise environments, are deficient in native
support for both elastic scaling and fine-grained performance iso-
lation. This makes them less suited for cloud-native, multi-tenant
serverless scenarios that demand dynamic resource provisioning
and tenant-level SLA guarantees.

Multitenancy, an essential architectural approach for serverless
databases, allows multiple tenants to share the same infrastruc-
ture, thereby enhancing scalability, flexibility, and cost-efficiency
[38]. However, this architecture poses significant challenges, in-
cluding tenant isolation, load balancing, autoscaling, and issues
related to hot keys [18]. DynamoDB [12], a pioneering serverless
key-value NoSQL database, providing a scalable and predictably
performant service, has set a benchmark for performance in dis-
tributed databases. Although DynamoDB explores the requirement
and necessity for traffic control and resource balancing in multi-
tenant architectures, it does not disclose further technical details
such as rescheduling algorithm and scaling policy. As reported [12],
DynamoDB supports trillions of API calls, peaking at 89.2 million
QPS during the Amazon Prime Day shopping event. To support
caching scenarios, DynamoDB introduces Amazon DynamoDB
Accelerator (DAX) [1], supporting up to 10 nodes per tenant and
millions of QPS. Microsoft CosmosDB [2] offers a fully managed
serverless experience but imposes a capacity limit of 1 million re-
quest units per database, limiting its ability to handle large-scale
workloads. Firestore [19] is tailored to enhance usability for web
and mobile developers, offering real-time data synchronization and
scalable development within the Firebase ecosystem.

8.2 Predictive AutoScaling
Autoscaling in cloud systems has drawn significant attention, with
notable contributions from Qu et al. [36], Barnawi et al. [4], and

Lorido-Botran et al. [26]. These solutions are now extensively
implemented across a variety of infrastructure services, such as
databases [17, 25, 40] and microservices [3, 5, 48]. Autoscaling is
typically categorized by scaling direction into horizontal [49] and
vertical [37] types, as well as by timing into reactive and proactive
types [36]. This paper concentrates on predictive scaling.

Workloads exhibiting regular periods have been shown to sig-
nificantly benefit from proactive strategies as demonstrated by
Higginson et al. [14] and Cortez et al. [9]. However, the diversity of
periods and trends introduces substantial forecasting challenges. To
address these, Qin et al. have proposed a collection of robust decom-
position methods [35, 44, 45]. Moreover, integrating multiple pre-
diction models has proven effective in handling complex workload
patterns in industrial applications. For instance, Seagull [33] classi-
fies Microsoft Azure services into daily/weekly and stable/short-
lived categories based on user activity, applying tailored prediction
models for each. Kim et al. introduce a cloud workload prediction
framework that incorporates multiple predictors [20]. Hu et al. de-
scribe a framework that integrates five distinct prediction models
for effective virtual machine provisioning [15].

8.3 Resource Scheduling
Resource scheduling in cloud computing has been extensively stud-
ied in recent years. For example, Eigen [23] introduces a hierarchical
resource management system, along with three heuristic-based re-
source optimization algorithms aimed at enhancing the resource al-
location ratio without compromising resource availability. Königet
al. [21] propose a method that combines mathematical modeling
with solvers to address the tenant placement problem in a Database-
as-a-Service cluster, with a focus on minimizing the probability of
failovers. Chen et al. [8] develop a method based on graph parti-
tioning and solver-based algorithms to address resource allocation
with service affinity in large-scale cloud environments. RAS [29]
employs Mixed-Integer Programming (MIP) to formulate the ca-
pacity reservation challenge for large-scale clusters. To adhere to
the Service Level Objective (SLO) of achieving a solution within
one hour, multi-phase solving techniques and variable aggregation
methods are utilized.

9 Conclusion
This paper introduces ABase, a multi-tenant NoSQL serverless data-
base developed at ByteDance. We analyze the diverse and dynamic
nature of workloads, summarize the challenges, and detail our con-
tributions. Firstly, ABase introduces dual-layer caching to support
high-speed caching scenarios, alongside a cache-aware isolation
mechanism to address the impacts of cache hits on resource con-
sumption estimates. Secondly, ABase has developed a predictive
autoscaling policy to dynamically adjust resources in alignment
with actual demand. Additionally, ABase proposes a limited fan-
out hash strategy to mitigate impacts from hot key pressure or a
decline in cache hits. Finally, ABase introduces a multi-resource
rescheduling algorithm to balance resource utilization across data
nodes. ABase has supported a workload with a peak QPS of over 13
billion and storage over 1 EB, and the experiments and production
analysis have validated the effectiveness of ABase’s innovations.

ABase SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany

References
[1] [n. d.]. Amazon DynamoDB Accelerator (DAX). https://aws.amazon.com/cn/

dynamodbaccelerator/ Accessed: 2024-07-02.
[2] [n. d.]. Azure Cosmos DB - NoSQL and Relational Database. https://azure.

microsoft.com/en-us/products/cosmos-db Accessed: 2024-07-02.
[3] Muhammad Abdullah, Waheed Iqbal, Josep Lluis Berral, Jorda Polo, and David

Carrera. 2020. Burst-aware predictive autoscaling for containerizedmicroservices.
IEEE Transactions on Services Computing 15, 3 (2020), 1448–1460.

[4] Ahmed Barnawi, Sherif Sakr, Wenjing Xiao, and Abdullah Al-Barakati. 2020.
The views, measurements and challenges of elasticity in the cloud: A review.
Computer Communications 154 (2020), 111–117.

[5] André Bauer, Veronika Lesch, Laurens Versluis, Alexey Ilyushkin, Nikolas Herbst,
and Samuel Kounev. 2019. Chamulteon: Coordinated auto-scaling of micro-
services. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2015–2025.

[6] Cor-Paul Bezemer and Andy Zaidman. 2010. Multi-tenant SaaS applications:
maintenance dream or nightmare?. In Proceedings of the joint ercim workshop
on software evolution (evol) and international workshop on principles of software
evolution (iwpse). 88–92.

[7] Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza Ramirez,
Max Mergenthaler Canseco, and Artur Dubrawski. 2023. NHITS: Neural Hi-
erarchical Interpolation for Time Series Forecasting. Proceedings of the AAAI
Conference on Artificial Intelligence 37, 6 (June 2023), 6989–6997. doi:10.1609/aaai.
v37i6.25854

[8] Zuzhi Chen, Fuxin Jiang, Binbin Chen, Yu Li, Yunkai Zhang, Chao Huang, Rui
Yang, Fan Jiang, Jianjun Chen, Wu Xiang, et al. 2024. Resource Allocation
with Service Affinity in Large-Scale Cloud Environments. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE). IEEE, 5280–5293.

[9] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles. 153–167.

[10] Carlo Curino, Evan PC Jones, Samuel Madden, and Hari Balakrishnan. 2011.
Workload-aware database monitoring and consolidation. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of data. 313–324.

[11] Sudipto Das, Vivek R. Narasayya, Feng Li, andManoj Syamala. 2013. CPU Sharing
Techniques for Performance Isolation in Multi-Tenant Relational Database-as-
a-Service. Proceedings of the VLDB Endowment 7, 1 (Sept. 2013), 37–48. doi:10.
14778/2732219.2732223

[12] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog,
Colin Lazier, Erben Mo, Akhilesh Mritunjai, Somasundaram Perianayagam, Tim
Rath, Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul,
Doug Terry, and Akshat Vig. 2022. Amazon DynamoDB: A Scalable, Predictably
Performant, and Fully Managed NoSQL Database Service. In 2022 USENIX Annual
Technical Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022
(ATC), Jiri Schindler and Noa Zilberman (Eds.). USENIX Association, 1037–1048.

[13] Apache Software Foundation. 2024. Apache BRPC. https://brpc.apache.org
[14] Antony S. Higginson, Mihaela Dediu, Octavian Arsene, Norman W. Paton, and

Suzanne M. Embury. 2020. Database Workload Capacity Planning Using Time
Series Analysis and Machine Learning. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’20). Association
for Computing Machinery, New York, NY, USA, 769–783. doi:10.1145/3318464.
3386140

[15] Yazhou Hu, Bo Deng, and Fuyang Peng. 2016. Autoscaling Prediction Models
for Cloud Resource Provisioning. In 2016 2nd IEEE International Conference on
Computer and Communications (ICCC). 1364–1369. doi:10.1109/CompComm.2016.
7924927

[16] Ru Jia, Yun Yang, John Grundy, Jacky Keung, and Li Hao. 2021. A systematic
review of scheduling approaches on multi-tenancy cloud platforms. Information
and Software Technology 132 (2021), 106478.

[17] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen,
and Subru Krishnan. 2019. Peregrine: Workload optimization for cloud query
engines. In Proceedings of the ACM Symposium on Cloud Computing. 416–427.

[18] Aditi Sharma and Parmeet Kaur. 2023. A Survey of Distributed Data Storage in
the Cloud for Multitenant Applications. International Journal of Performability
Engineering 19, 3 (March 2023), 184. doi:10.23940/ijpe.23.03.p4.184192

[19] Ram Kesavan, David Gay, Daniel Thevessen, Jimit Shah, and C. Mohan. 2023.
Firestore: The NoSQL Serverless Database for the Application Developer. In 2023
IEEE 39th International Conference on Data Engineering (ICDE) (ICDE). 3376–3388.
doi:10.1109/ICDE55515.2023.00259

[20] In Kee Kim, WeiWang, Yanjun Qi, and Marty Humphrey. 2022. Forecasting Cloud
Application Workloads With CloudInsight for Predictive Resource Management.
IEEE Transactions on Cloud Computing 10, 3 (July 2022), 1848–1863. doi:10.1109/
TCC.2020.2998017

[21] Arnd Christian König, Yi Shan, Karan Newatia, Luke Marshall, and Vivek
Narasayya. 2023. Solver-In-The-Loop Cluster Resource Management for
Database-as-a-Service. Proceedings of the VLDB Endowment 16, 13 (2023), 4254–
4267.

[22] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS operating systems review 44, 2 (2010), 35–40.

[23] Ji You Li, Jiachi Zhang, Wenchao Zhou, Yuhang Liu, Shuai Zhang, Zhuoming
Xue, Ding Xu, Hua Fan, Fangyuan Zhou, and Feifei Li. 2023. Eigen: End-to-End
Resource Optimization for Large-Scale Databases on the Cloud. Proceedings of
the VLDB Endowment 16, 12 (2023), 3795–3807.

[24] Bryan Lim, Sercan Ö. Arık, Nicolas Loeff, and Tomas Pfister. 2021. Temporal
Fusion Transformers for Interpretable Multi-Horizon Time Series Forecasting.
International Journal of Forecasting 37, 4 (Oct. 2021), 1748–1764. doi:10.1016/j.
ijforecast.2021.03.012

[25] Konstantinos Lolos, Ioannis Konstantinou, Verena Kantere, and Nectarios Koziris.
2017. Adaptive state space partitioning of markov decision processes for elas-
tic resource management. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). IEEE, 191–194.

[26] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A review of
auto-scaling techniques for elastic applications in cloud environments. Journal
of grid computing 12 (2014), 559–592.

[27] JonathanMace, Peter Bodik, Madanlal Musuvathi, Rodrigo Fonseca, and Krishnan
Varadarajan. 2016. 2DFQ: Two-Dimensional Fair Queuing for Multi-Tenant Cloud
Services. In Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16).
Association for Computing Machinery, New York, NY, USA, 144–159. doi:10.
1145/2934872.2934878

[28] Vivek R. Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and
Surajit Chaudhuri. 2013. SQLVM: Performance Isolation in Multi-Tenant Re-
lational Database-as-a-Service. In Sixth Biennial Conference on Innovative Data
Systems Research, CIDR 2013, Asilomar, CA, USA, January 6-9, 2013, Online Pro-
ceedings (CIDR). www.cidrdb.org.

[29] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pavan Kumar, Maxim Khutor-
nenko, Mayank Pundir, Yirui Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le, et al.
2021. RAS: continuously optimized region-wide datacenter resource allocation. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
505–520.

[30] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. 2013. {DeepDive}: Transparently identifying and managing perfor-
mance interference in virtualized environments. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13). 219–230.

[31] Boris N. Oreshkin, Grzegorz Dudek, Paweł Pełka, and Ekaterina Turkina. 2021.
N-BEATS Neural Network for Mid-Term Electricity Load Forecasting. Applied
Energy 293 (July 2021), 116918. doi:10.1016/j.apenergy.2021.116918

[32] Zhicheng Pan, Yihang Wang, Yingying Zhang, Sean Bin Yang, Yunyao Cheng,
Peng Chen, Chenjuan Guo, Qingsong Wen, Xiduo Tian, Yunliang Dou, Zhiqiang
Zhou, Chengcheng Yang, Aoying Zhou, and Bin Yang. 2023. MagicScaler:
Uncertainty-Aware, Predictive Autoscaling. Proceedings of the VLDB Endow-
ment 16, 12 (Aug. 2023), 3808–3821. doi:10.14778/3611540.3611566

[33] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon Kno-
ertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina Wang,
Alan Au, Carlo Curino, Qun Guo, Alekh Jindal, Ajay Kalhan, Morgan Oslake, So-
nia Parchani, Vijay Ramani, Raj Sellappan, Saikat Sen, Sheetal Shrotri, Soundarara-
jan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, and Yiwen Zhu. 2020. Seagull:
An Infrastructure for Load Prediction and Optimized Resource Allocation. Proc.
VLDB Endow. 14, 2 (2020), 154–162. doi:10.14778/3425879.3425886

[34] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and
Ajay Kalhan. 2022. Moneyball: Proactive Auto-Scaling in Microsoft Azure SQL
Database Serverless. Proceedings of the VLDB Endowment 15, 6 (2022), 1279–1287.

[35] Huajie Qian, Qingsong Wen, Liang Sun, Jing Gu, Qiulin Niu, and Zhimin Tang.
2022. RobustScaler: QoS-Aware Autoscaling for Complex Workloads. In 2022
IEEE 38th International Conference on Data Engineering (ICDE) (ICDE). 2762–2775.
doi:10.1109/ICDE53745.2022.00252

[36] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2018. Auto-scaling web
applications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR)
51, 4 (2018), 1–33.

[37] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemys-
law Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. 2020. Autopilot: Workload Autoscaling at Google.
In Proceedings of the Fifteenth European Conference on Computer Systems (EuroSys).
ACM, Heraklion Greece, 1–16. doi:10.1145/3342195.3387524

[38] Wael Sellami, Hatem Hadj Kacem, and Ahmed Hadj Kacem. 2020. Dynamic
provisioning of service composition in a multi-tenant SaaS environment. Journal
of Network and Systems Management 28, 2 (2020), 367–397.

[39] Luming Sun, Shijin Gong, Tieying Zhang, Fuxin Jiang, Zhibing Zhao, Jianjun
Chen, and Xinyu Zhang. 2023. SUFS: A Generic Storage Usage Forecasting Service
Through Adaptive Ensemble Learning. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE) (ICDE). 3168–3181. doi:10.1109/ICDE55515.2023.
00243

[40] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga,
Michael Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. 2018. P-store:
An elastic database system with predictive provisioning. In Proceedings of the
2018 International Conference on Management of Data. 205–219.

https://aws.amazon.com/cn/dynamodbaccelerator/
https://aws.amazon.com/cn/dynamodbaccelerator/
https://azure.microsoft.com/en-us/products/cosmos-db
https://azure.microsoft.com/en-us/products/cosmos-db
https://doi.org/10.1609/aaai.v37i6.25854
https://doi.org/10.1609/aaai.v37i6.25854
https://doi.org/10.14778/2732219.2732223
https://doi.org/10.14778/2732219.2732223
https://brpc.apache.org
https://doi.org/10.1145/3318464.3386140
https://doi.org/10.1145/3318464.3386140
https://doi.org/10.1109/CompComm.2016.7924927
https://doi.org/10.1109/CompComm.2016.7924927
https://doi.org/10.23940/ijpe.23.03.p4.184192
https://doi.org/10.1109/ICDE55515.2023.00259
https://doi.org/10.1109/TCC.2020.2998017
https://doi.org/10.1109/TCC.2020.2998017
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.1145/2934872.2934878
https://doi.org/10.1145/2934872.2934878
https://doi.org/10.1016/j.apenergy.2021.116918
https://doi.org/10.14778/3611540.3611566
https://doi.org/10.14778/3425879.3425886
https://doi.org/10.1109/ICDE53745.2022.00252
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1109/ICDE55515.2023.00243
https://doi.org/10.1109/ICDE55515.2023.00243

SIGMOD-Companion’25, June 22–27, 2025, Berlin, Germany Rong Kang et al.

[41] Sean J. Taylor and Benjamin Letham. 2018. Forecasting at Scale. The American
Statistician (Jan. 2018).

[42] Felipe Tobar, Thang D Bui, and Richard E Turner. 2015. Learning Stationary
Time Series Using Gaussian Processes with Nonparametric Kernels. In Advances
in Neural Information Processing Systems (NIPS, Vol. 28). Curran Associates, Inc.

[43] Hao Wang, Jiaxin Ou, Ming Zhao, Sheng Qiu, Yizheng Jiao, Yi Wang, Qizhong
Mao, Zhengyu Yang, Yang Liu, Jianshun Zhang, et al. 2024. LavaStore:
ByteDance’s Purpose-Built, High-Performance, Cost-Effective Local Storage En-
gine for Cloud Services. Proceedings of the VLDB Endowment 17, 12 (2024),
3799–3812.

[44] Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, and Huan Xu. 2021.
RobustPeriod: Robust time-frequency mining for multiple periodicity detection.
In Proceedings of the 2021 international conference on management of data. 2328–
2337.

[45] QingsongWen, Zhe Zhang, Yan Li, and Liang Sun. 2020. Fast RobustSTL: Efficient
and robust seasonal-trend decomposition for time series with complex patterns.
In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining. 2203–2213.

[46] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer:
Decomposition Transformers with Auto-Correlation for Long-Term Series Fore-
casting. In Advances in Neural Information Processing Systems (NIPS, Vol. 34).
Curran Associates, Inc., 22419–22430.

[47] Siqiao Xue, Chao Qu, Xiaoming Shi, Cong Liao, Shiyi Zhu, Xiaoyu Tan, Lintao
Ma, Shiyu Wang, Shijun Wang, Yun Hu, Lei Lei, Yangfei Zheng, Jianguo Li, and
James Zhang. 2022. A Meta Reinforcement Learning Approach for Predictive
Autoscaling in the Cloud. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’22). Association for Computing
Machinery, New York, NY, USA, 4290–4299. doi:10.1145/3534678.3539063

[48] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2020. Microscaler: Cost-effective
scaling for microservice applications in the cloud with an online learning ap-
proach. IEEE Transactions on Cloud Computing 10, 2 (2020), 1100–1116.

[49] Zhiqiang Zhou, Chaoli Zhang, Lingna Ma, Jing Gu, Huajie Qian, Qingsong Wen,
Liang Sun, Peng Li, and Zhimin Tang. 2023. AHPA: Adaptive Horizontal Pod
Autoscaling Systems on Alibaba Cloud Container Service for Kubernetes. Pro-
ceedings of the AAAI Conference on Artificial Intelligence 37, 13 (Sept. 2023),
15621–15629. doi:10.1609/aaai.v37i13.26852

https://doi.org/10.1145/3534678.3539063
https://doi.org/10.1609/aaai.v37i13.26852

	Abstract
	1 Introduction
	2 Background
	2.1 Diversity
	2.2 Dynamism

	3 Architecture
	3.1 Data Model and Design Rationale
	3.2 Multi-Tenant Architecture
	3.3 Recovery and Robustness

	4 System Implementation
	4.1 Normalized Request Unit
	4.2 Hierarchical Request Restriction
	4.3 Dual-Layer Weighted Fair Queueing
	4.4 Dual-Layer Caching

	5 Workload Management
	5.1 Predictive AutoScaling
	5.2 Workload Forecasting
	5.3 Workload Rescheduling

	6 Experiments
	6.1 Production Statistics
	6.2 Performance Isolation
	6.3 Elasticity
	6.4 Resource Utilization
	6.5 Cache Effectiveness

	7 Lessons in Practice
	8 Related Works
	8.1 NoSQL Serverless Databases
	8.2 Predictive AutoScaling
	8.3 Resource Scheduling

	9 Conclusion
	References

